Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Rheumatology (Oxford) ; 2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2298913

ABSTRACT

OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186. METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry. RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs. CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.

2.
Neurochem Res ; 48(8): 2345-2349, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2265852

ABSTRACT

After recovering from the acute phase of coronavirus disease 2019 (COVID-19), many patients struggle with additional symptoms of long COVID during the chronic phase. Among them, the neuropsychiatric manifestations characterized by a short-term memory loss and inability to concentrate are called "brain fog". Recent studies have revealed the involvement of "chronic neuro-inflammation" in the pathogenesis of brain fog following COVID-19 infection. In the COVID-related brain fog, similarly to neurodegenerative disorders caused by neuro-inflammation, brain leukocytes, such as microglia and lymphocytes, are hyperactivated, suggesting the overexpression of delayed rectifier K+-channels (Kv1.3) within the cells. In our previous patch-clamp studies, drugs, such as antihistamines, statins, nonsteroidal anti-inflammatory drugs, antibiotics and anti-hypertensive drugs, suppressed the Kv1.3-channel activity and reduced the production of pro-inflammatory cytokines. Additionally, newer generation antihistamines, antibiotics and corticosteroids strongly stabilize mast cells that directly activate microglia in the brain. Taking such pharmacological properties of these commonly used drugs into account, they may be useful in the treatment of COVID-related brain fog, in which the enhanced innate and adaptive immune responses are responsible for the pathogenesis.


Subject(s)
COVID-19 , Humans , Post-Acute COVID-19 Syndrome , Leukocytes , Inflammation , Anti-Bacterial Agents , Brain
4.
Clin Chim Acta ; 536: 39-44, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2031181

ABSTRACT

BACKGROUND: Coronavirus disease 2019(COVID-19), the infectious respiratory disease caused by a newly discovered pathogen (severe acute respiratory syndrome coronavirus 2), is a pandemic that places a burden on the health care system. Recently, most research on COVID-19 has emphasized its profound impact on specific regions and ethnic groups. A possible explanation for these variations in disease presentation and severity might be differences in the gene pool of populations. This study therefore attempted to clarify possible involvements of genetic factors affecting COVID-19 pathogenesis with a focus on voltage-gated potassium channel-interacting protein 4 (KCNIP4) and angiotensin-converting enzyme 1 (ACE1) gene polymorphisms. MATERIALS AND METHODS: In this case-control study, the polymorphisms were genotyped using PCR in 194 COVID-19 patients and 194 healthy controls. RESULTS: COVID-19 susceptibility and severity appeared to be unaffected by these polymorphisms. However, this study supported the relevance of ACE1 II genotype frequency to a decreased number of deaths due to the infection. We found that COVID-19 patients with the ACE1 II genotype have a statistically significant better chance of survival (p = 0.008). CONCLUSION: This study strengthens the idea that the ACE1 I/D polymorphism can be a novel prognostic factor indicating the outcome of COVID-19.


Subject(s)
COVID-19 , Potassium Channels, Voltage-Gated , Angiotensin-Converting Enzyme 2 , Angiotensins/genetics , Angiotensins/metabolism , COVID-19/genetics , Case-Control Studies , Humans , Iran , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Polymorphism, Genetic , Potassium Channels, Voltage-Gated/genetics
5.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1953750

ABSTRACT

Voltage-gated potassium channels of the Kv1.3 type are considered a potential new molecular target in several pathologies, including some cancer disorders and COVID-19. Lipophilic non-toxic organic inhibitors of Kv1.3 channels, such as statins and flavonoids, may have clinical applications in supporting the therapy of some cancer diseases, such as breast, pancreas, and lung cancer; melanoma; or chronic lymphocytic leukemia. This study focuses on the influence of the co-application of statins-simvastatin (SIM) or mevastatin (MEV)-with flavonoids 8-prenylnaringenin (8-PN), 6-prenylnarigenin (6-PN), xanthohumol (XANT), acacetin (ACAC), or chrysin on the activity of Kv1.3 channels, viability, and the apoptosis of cancer cells in the human T cell line Jurkat. We showed that the inhibitory effect of co-application of the statins with flavonoids was significantly more potent than the effects exerted by each compound applied alone. Combinations of simvastatin with chrysin, as well as mevastatin with 8-prenylnaringenin, seem to be the most promising. We also found that these results correlate with an increased ability of the statin-flavonoid combination to reduce viability and induce apoptosis in cancer cells compared to single compounds. Our findings suggest that the co-application of statins and flavonoids at low concentrations may increase the effectiveness and safety of cancer therapy. Thus, the simultaneous application of statins and flavonoids may be a new and promising anticancer strategy.


Subject(s)
COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Apoptosis , Cell Line , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Kv1.3 Potassium Channel/metabolism , Neoplasms/drug therapy , Simvastatin/pharmacology
6.
J Mass Spectrom Adv Clin Lab ; 25: 27-35, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1885932

ABSTRACT

Introduction: Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods: Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results: The calibration ranges were 20 - 5000 and 100 - 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99-1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at -20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions: PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.

7.
Chin Med ; 17(1): 40, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1822198

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) causes a global pandemic and has devastating effects around the world, however, there are no specific antiviral drugs and vaccines for the constant mutation of SARS-CoV-2. PURPOSE: In this study, we evaluted the antiviral and anti-inflammatory activities of Liushen Capsules (LS) on different novel coronavirus in vitro, studied its therapeutic effects on novel SARS-CoV-2 infected mice and observed the LS's clinical efficacy and safety in COVID-19. METHODS: The antiviral and aiti-inflammatory effects of LS on the 501Y.V2/B.1.35 and G/478K.V1/ B.1.617.2 strains were determined in vitro. A hACE2 mouse model of novel SARS-CoV-2 pneumonia was established. Survival rates, histological changes, inflammatory markers, lung virus titers and the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blotting and immumohistochemical staining in the lungs were measured. Subsequently, the disease duration, prognosis of disease, time of negative nucleic acid and the cytokines levels in serum were used to assess the efficacy of treatment with LS in patients. RESULTS: The results showed that LS (2, 1, 0.5 µg/mL) could significantly inhibit the replication of the two SARS-CoV-2 variants and the expression of pro-inflammatory cytokines (IL-6, IL-8, IP-10, CCL-5, MIP-1α, IL-1α) induced by the virus in vitro. As for the survival experiment in mice, the survival rate of virus group was 20%, while LS-treatment groups (40, 80, 160 mg/kg) could increase the survival rate to 60, 100 and 100%, respectively. LS (40, 80, 160 mg/kg) could significantly decrease the lung titers in mice and it could improve the pathological changes, inhibit the excessive inflammatory mediators (IFN-α, IFN-γ, IP-10, MCP-1) and the protein expression of p-NF-κB p65 in mice. Moreover, LS could significantly decrease SARS-CoV-2-induced activation of p-NF-κB p65, p-IκBα, and p-p38 MAPK and increase the protein expression of the IκBα. In addition, the patient got complete relief of symptoms after being treated with LS for 6 days and was proven with negative PCR test after being treated for 23 days. Finally, treatment with LS could reduce the release of inflammatory cytokines (IL-6, PDGF-AA/BB, Eotaxin, MCP-1, MIP-1α, MIP-1ß, GRO, CCL-5, MCP-3, IP-10, IL-1α). CONCLUSION: LS effectively alleviated novel SARS-CoV-2 or variants induced pneumonia in vitro and in vivo, and improved the prognosis of COVID-19. In light of the efficacy and safety profiles, LS could be considered for the treatment of COVID-19 with a broad-spectrum antiviral and anti-inflammatory agent.

8.
J Mol Struct ; 1230: 129905, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1065488

ABSTRACT

Voltage-gated potassium channels are integral membrane proteins selectively permeable for potassium ions and activated upon change of membrane potential. Voltage-gated potassium channels of the Kv1.3 type were discovered both in plasma membrane and in inner mitochondrial membrane (mito Kv1.3 channels). For some time Kv1.3 channels located both in plasma membrane and in mitochondria are considered as a potentially new molecular target in several pathologies including some cancer disorders. Lipophilic nontoxic organic inhibitors of Kv1.3 channels may potentially find a clinical application to support therapy of some cancer diseases such as breast, pancreas and lung cancer, melanoma or chronic lymphocytic leukaemia (B-CLL). Inhibition of T lymphocyte Kv1.3 channels may be also important in treatment of chronic and acute respiratory diseases including severe pulmonary complication in corona virus disease Covid 19, however further studies are needed to confirm this supposition. Statins are small-molecule organic compounds, which are lipophilic and are widely used in treatment of hypercholesterolemia and atherosclerosis. Electrophysiological studies performed in our laboratory showed that statins: pravastatin, mevastatin and simvastatin are effective inhibitors of Kv1.3 channels in cancer cells of human T cell line Jurkat. We showed that application of the statins in the concentration range from 1.5 µM to 50 µM inhibited the channels in a concentration-dependent manner. The inhibitory effect was the most potent in case of simvastatin and the least potent in case of pravastatin. The inhibition was partially irreversible in case of simvastatin and fully reversible in case of pravastatin and mevastatin. It was accompanied by a significant acceleration of the current inactivation rate without any significant change of the activation rate. Mechanism of the inhibition is probably complex, including a direct interaction with the channel protein and perturbation of lipid bilayer structure, leading to stabilization of the inactivated state of the channels.

9.
Life Sci ; 267: 118923, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-988727

ABSTRACT

Such testing and trying time probably never seen before in the human history. The novel coronavirus disease abbreviated as COVID-19 is the ongoing health crisis which entered into human life in late December 2019. The ease of transmission between humans and the undetectability in early stage makes COVID-19 frightening and unprecedented. The disease is characterised by pneumonia progressing to breathing difficulty, acute respiratory distress syndrome (ARDS) and multi-organ failure. Clinical studies suggest excessive release of inflammatory mediators leads to cytokine storm, a phenomenon which appears to be potentially life-threatening in COVID-19. Across the globe, when the world authorities are grappling to contain the virus, our review provides a glimpse on structure, pathophysiology of the virus and further sheds light on various clinical complications associated with the disease in order to open up/raise new horizons to explore various possible theoretical targets for COVID-19. The review also portrays a question and debates: Can targeting cytokine storm can be a feasible approach to combat COVID-19?


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , SARS-CoV-2/immunology , Antiviral Agents/therapeutic use , Cytokine Release Syndrome/physiopathology , Humans , Inflammation Mediators/metabolism , Interleukins/immunology , Respiratory Distress Syndrome/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Drug Discov Ther ; 14(3): 143-144, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-612733

ABSTRACT

In the midst of a pandemic, finding effective treatments for coronavirus disease 2019 (COVID-19) is the urgent issue. In "chronic inflammatory diseases", the overexpression of delayed rectifier K+-channels (Kv1.3) in leukocytes is responsible for the overactivation of cellular immunity and the subsequent cytokine storm. In our previous basic studies, drugs including chloroquine and azithromycin strongly suppressed the channel activity and pro-inflammatory cytokine production from lymphocytes. These findings suggest a novel pharmacological mechanism by which chloroquine, with or without azithromycin, is effective for severe cases of COVID-19, in which the overactivation of cellular immunity and the subsequent cytokine storm are responsible for the pathogenesis.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Cytokines/antagonists & inhibitors , Drug Delivery Systems/methods , Kv1.3 Potassium Channel/antagonists & inhibitors , Lymphocytes/drug effects , Pneumonia, Viral/drug therapy , Azithromycin/administration & dosage , COVID-19 , Chloroquine/administration & dosage , Coronavirus Infections/metabolism , Cytokines/metabolism , Drug Delivery Systems/trends , Humans , Kv1.3 Potassium Channel/metabolism , Lymphocytes/metabolism , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL